過去の出題傾向について確認しておこう!

--- 京大入試研究[生物] ----

▶ 出題一覧表

過去10年の京都大学の入学試験(生物)で出題された分野を、次の表にまとめた。

	I	I	ш	V
2016	致死遺伝子と染色体地図 マーカー遺伝子 染色体突然変異	サクラソウの自家不和合 性 マイクロサテライトと親 子鑑定	C4 植物 中枢神経系 大脳のはたらき	制限酵素地図 プライマーの作製 分子モーターと酵素
2015	光合成のしくみ X 染色体不活性化	減数分裂と生殖 精子形成の変異と遺伝	血糖量調節と糖尿病 筋収縮のしくみ	ベルクマンの法則 シカの個体群動態
2014	免疫と情報伝達 突然変異と遺伝	酵母の突然変異 一遺伝子一酵素説	視覚 フィトクロムと光応答	ミドリムシの増殖曲線 植物プランクトンの季節 変化
2013	連鎖・組換え 一遺伝子一酵素説	浸透圧 タンパク質の輸送	植生と遷移 水界生態系と富栄養化	遺伝子組換え実験 タンパク質のリン酸化と がん細胞
2012	有袋類の分布と進化 食物網と生態的平衡	種皮と胚乳の遺伝 ABO 式血液型の遺伝の しくみと集団遺伝	多細胞生物の体制 免疫,ハイブリドーマの 作製	遺伝子組換え実験輸送体による物質輸送
2011	遺伝子組換え実験 神経の伝達	X 染色体不活性化 生殖細胞の性分化	純系の作出法 マーカー遺伝子による遺 伝子診断	被子・裸子植物の胚乳形 成 生命表と生存曲線
2010	転写・翻訳 視物質の分子系統樹	個体群の相互作用 アミノ酸価	不連続密度勾配遠心法 呼吸の過程	カタツムリの右巻き, 左 巻きの遅滞遺伝 左右非対称性の進化
2009	ヒストン 選択的スプライシング	ハッチョウトンボの体温 調節	気孔の開閉 CO ₂ の輸送と光合成	集団遺伝の数理的理論
2008	ホヤの割球再構成 細胞質と遺伝子発現	匂いと順応 抗体可変部の遺伝子再構成	ウシの病因遺伝子の確率 マーカー遺伝子	植物群落の水平分布 沈水植物の適応
2007	生殖細胞の分化, カエル の発生と卵の表層回転	G タンパク質とアメーバ 運動, 繊毛・鞭毛運動	遺伝とマーカー遺伝子, 突然変異の検出	森林生態系, シジュウカ ラの一腹卵数

▶ 分析と対策

- ●1大問内に複数の分野から出題されることが多く、総合力が試される。
- ●遺伝など複雑な計算問題が多い。
- ●生態と環境からの出題が多い。
- ●遺伝子やタンパク質など分子レベルの出題が多い。

まずは教科書レベルの知識を確実に身につけ、各分野を関連づけて総合力を強化しよう。また、論述問題は長文のものが出題されることが予想されるため、過去問について最低 10 年分は研究するとともに、基本的知識や実験考察の結果を、ポイントを押さえて論述する練習を重ねておこう。また、京都大学は、論述だけでなく計算問題も難しめのものが多く出題されるので、過去問や模試などを活用して、慣れておこう。

(C)東進ハイスクール